If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2+23p-279=0
a = 6; b = 23; c = -279;
Δ = b2-4ac
Δ = 232-4·6·(-279)
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7225}=85$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-85}{2*6}=\frac{-108}{12} =-9 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+85}{2*6}=\frac{62}{12} =5+1/6 $
| -3b+2=4b+ | | –u+92=1 | | 6y+12+6y=12 | | -9v+6=-10v | | 2/9x-4=2/3x= | | 57+r=67 | | 2x=42/5 | | -2y+17=-13y= | | 3n+7=28n= | | 4x^2+14x-79=0 | | 7(x+6+7x=9 | | 5c-24=-4c= | | 11x-7x+12=2x+3-21 | | t÷5-7=15 | | 9n+4=5n+18n= | | 12y+12=12 | | 8t+1=3t-19t= | | 5.3x-14.6=22.5 | | a÷6+8=6 | | 5(2z−10)=-10 | | 213=28-u | | 4^3x=2^x+1 | | 5+3=2b+3 | | 44v=2212 | | -9+61-8r=27 | | 3(2x+5)-7=6x+8 | | 38-19+12=j | | -3.1=n/6 | | 6x-13=8x-5x | | 5-4c=17 | | 20x=3(180-x) | | -4(3m+3=-48 |